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ABSTRACT

Accurate and reliable methods of measuring windblown sediment are needed to confirm, validate, and improve erosion
models, assess the intensity of aeolian processes and related damage, determine the source of pollutants, and for other
applications. This paper outlines important principles to consider in conducting field-scale wind erosion studies and proposes
strategies of field data collection for use in model validation and development. Detailed discussions include consideration
of field characteristics, sediment sampling, and meteorological stations. The field shape used in field-scale wind erosion
research is generally a matter of preference and in many studies may not have practical significance. Maintaining a clear non-
erodible boundary is necessary to accurately determine erosion fetch distance. A field length of about 300 m may be needed
in many situations to approach transport capacity for saltation flux in bare agricultural fields. Field surface conditions affect
the wind profile and other processes such as sediment emission, transport, and deposition and soil erodibility. Knowledge
of the temporal variation in surface conditions is necessary to understand aeolian processes. Temporal soil properties that
impact aeolian processes include surface roughness, dry aggregate size distribution, dry aggregate stability, and crust char-
acteristics. Use of a portable 2 tall anemometer tower should be considered to quantify variability of friction velocity and
aerodynamic roughness caused by surface conditions in field-scale studies. The types of samplers used for sampling aeolian
sediment will vary depending upon the type of sediment to be measured. The Big Spring Number Eight (BSNE) and
Modified Wilson and Cooke (MWAC) samplers appear to be the most popular for field studies of saltation. Suspension flux
may be measured with commercially available instruments after modifications are made to ensure isokinetic conditions at
high wind speeds. Meteorological measurements should include wind speed and direction, air temperature, solar radiation,
relative humidity, rain amount, soil temperature and moisture. Careful consideration of the climatic, sediment, and soil
surface characteristics observed in future field-scale wind erosion studies will ensure maximum use of the data collected.
Copyright © 2003 John Wiley & Sons, Ltd.
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INTRODUCTION

Accurate and reliable methods of measuring windblown sediment are needed to confirm, validate, and improve
erosion models, assess the intensity of aeolian processes and related damage, determine the source of pollutants,
and for other applications. The type of sampling apparatus and methods used in wind erosion (aeolian)
field studies depend upon the specific objectives of the study. In this paper we will consider the field char-
acteristics, aeolian sediment sampling devices, meteorological measurements, and selected data analysis
methods for field-scale (paddock-scale) wind erosion studies used to validate and further develop wind erosion

* Correspondence to: T. M. Zobeck, Wind Erosion and Water Conservation Research Unit, USDA, Agricultural Research Service, 3810 4th
Street, Lubbock, TX 79415, USA. E-mail: tzobeck@lbk.ars.usda.gov
Disclaimer: Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and
does not imply recommendation or endorsement by the US or foreign governments, ZALF, IRD-LISA, or Wageningen University.
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models. Studies at regional or larger scales may or may not require the same methods and will not be con-
sidered here.

Sampling windblown sediment in the field is not a new endeavor. Perhaps the earliest attempt was made in
Western Australia in 1908 (Olsson-Seffer, 1908). In this study, the carrying capacity of the wind was estimated
by measuring sediment collected at 2·0 cm intervals over a total height of 8·0 cm using five sheets of corrugated
iron held together in a frame.

In later studies of dunes, Bagnold (1941) used a slotted collector with an opening 1·25 cm wide and 76 cm
high to measure saltating grains and a buried ground trap to measure surface creep.

Chepil and Milne (1941) were probably the first to attempt to measure soil movement in agricultural fields.
They used a slotted catcher to measure soil transported within 5 cm of the soil surface at various distances from
the windward edge of the field. Few details about the wind or soil characteristics were observed. Chepil
expanded this work on several major soil types from 1938 to 1944 using Bagnold-type sand catchers (Chepil,
1946) to relate surface saltation and creep flux to distance from the windward edge of the field (fetch). Many
details of the experimental procedures are lacking. The study also included limited data on the size distribution
of soil surface aggregates.

Chepil first attempted to estimate field soil loss attributed to wind erosion in 1960 (Chepil, 1960). Estimates
of soil loss in mass per unit area were made by estimating the depth of soil loss from around wheat roots.
The smallest depth resolution used to estimate soil loss was 1·25 cm. This paper presented tables relating
estimated soil loss to field conditions during the measurement period of 1954 to 1956 in Kansas, USA. However,
these estimates did not provide climatic and site characteristics often needed to test or develop detailed erosion
models.

A detailed field procedure designed to validate erosion models, described by Fryrear et al. (1991), outlines
field instrumentation and methods of data analysis. Recommendations included a circular 200 m diameter field
with BSNE (Big Spring Number Eight) sampling masts (Figure 1) placed in a radial pattern within the circle
and one mast outside the circle in a non-erodible location. The meteorological instruments included sensors for
wind speed and direction, air temperature, solar radiation, soil temperature at one depth, rainfall, and relative
humidity. A piezoelectric device called a SENSIT (Gillette and Stockton, 1986) was used to detect saltation
particle impacts (Figure 2). A large number of sites have been instrumented in a similar fashion and used to
develop or validate models such as the Wind Erosion Equation, Wind Erosion Prediction System, and Revised
Wind Erosion Equation (Van Pelt et al., 2001, in press; Zobeck et al., 2001; Van Pelt and Zobeck, in press).

The Fryrear approach described above was specifically developed for agricultural land, particularly the most
erosive fallow field conditions. Table I summarizes a wide variety of field-scale studies recently performed on
agricultural land. In most studies, only one field was investigated at a location due to the large field size required
or equipment limitations. A few studies have used paired plots to investigate spatial variation or treatment
effects (Sterk and Spaan, 1997; Sterk et al., 1999; Gomes et al., 2003a).

A variety of erosion models are now available to estimate windblown sediment transport (Woodruff and
Siddoway, 1965; Hagen, 1991; Marticorena and Bergametti, 1995; Shao et al., 1996; Potter et al., 1998; Fryrear
et al., 1998; Alfaro and Gomes, 2001; Gregory and Darwish, 2001). Table II lists the climatic and soil variables
needed for these models. Most models have input variables that include the need for data related to wind and
other climatic variables, soil surface and near-surface properties, and vegetative properties. Validation of these
and future models will require a systematic method of data collection based on common sampling principles and
include methods of data collection for the input variables as well as sediment movement output variables.
Although a variety of methods and instruments were employed in the studies described in Table I, not all studies
included information on climatic, site, soil, and vegetative variables common to most models. The kind of
information collected depended on the purpose of the study. Studies designed to validate erosion models (e.g.
Zobeck et al., 2001) require much more data than an agronomic study in which conservation measures are tested
(e.g. Bielders et al., 2000).

Even though a variety of methods and instruments have been used to investigate windblown sediment in
agricultural fields, the selection of the instruments and the methods employed are governed by relatively few
operating principles. This paper will outline important principles and factors to consider in conducting field-scale
wind erosion studies and propose strategies of field data collection for use in model validation and development.
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This list is not intended to be exhaustive, but will include factors used by most models. The paper will discuss
important field characteristics such as field shape, length, and surface conditions, sediment sampling, and
meteorological station details. Consideration of slope, topography, and vegetation pose significant complexity
to the challenge of measuring aeolian sediment and space limitations will not allow us to consider these here.

FIELD CHARACTERISTICS

Field geometry

Field shape. The field shape used in field-scale wind erosion research is important because it influences
sampling design and data processing methods. Field shape is generally a matter of preference and in some
studies may not have practical significance. Circular fields have the advantage of symmetry, which can simplify
the calculation of fetch distances (Fryrear et al., 1991). Use of circular fields facilitates tests of the effects of
ridges on wind erosion; tilling in a circular pattern allows testing of the effects of ridges perpendicular to the
wind direction from all wind directions. The shape of the field is often imposed by local farming practices. For

Figure 1. BSNE dust samplers. (Top) Samplers mounted at heights of 5, 10, 20, 50 and 100 cm. (Bottom) Close-up of bottom three samplers
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example, rectangular or square fields are often the rule when working with farmers. Care should be taken to
ensure that the long side of the field is oriented parallel to the dominant wind direction. This orientation is
preferred to maximize the sampling fetch.

Field boundaries. Field boundaries are important in establishing a measurement or control area from which
fluxes in and out of the study area are known. The precise nature of the boundary may limit experimental results
and require specific sampling designs as discussed below.

Maintaining a clear, stabilized, non-erodible boundary is necessary to accurately determine erosion fetch
distance. Tillage has been used to stabilize fields using tillage ridges in some studies (Fryrear et al., 1991).
However, the tillage ridges must be maintained in a rough, non-erodible condition so that previously eroded
sediment is not blown back on the field when the wind direction changes. Stabilizing the edge of the field with
flat residue or vegetation may be easier to maintain than tillage ridges, especially in the cases of sandy soils for
which ridges collapse very quickly (Bielders et al., 2000). If sediment is deposited upon the residue, application
of additional residue will be necessary. Chemical soil stabilizers may be used if tillage and residue are not
practical. Many commercial soil stabilizers are now available.

In many instances, it is impractical or not possible to accurately determine the non-erodible boundary. In these
cases samplers should be installed to determine how much sediment crosses the field boundary into the study
area. For example, in many areas such as the small-scale fields in Sahelian Africa, non-erodible boundaries are
usually difficult to define. In such cases fetch may not be known, but it is important to know the input of
sediment from upwind sources.

Samplers placed immediately upwind of the study field can be used to measure incoming sediment. If the
incoming sediment is not accounted for in the analysis, the estimated soil losses may be incorrect. In addition,
although net soil loss out of a study area may not be great, there may still be enough transport in such a field
to damage crops and cause significant redistribution of soil material within the field, producing local degradation
(at erosion spots) and enrichment (at sedimentation spots). The latter process is related to the high spatial
variability in sediment mass fluxes to be discussed later.

Field length. Field length is important because it influences aeolian mass transport. Determination of the
maximum sediment transport capacity of a field, needed to validate erosion in some models, requires a con-
sideration of field length. Studies to evaluate wind erosion control practices must also consider field length when
comparing treatments.

Saltation is a self-regulating phenomenon whereby saltation flux increases with fetch as the transport capacity
of the wind, for a given field condition, is approached (Bagnold, 1941; Chepil and Milne, 1941; Owen, 1964;

Figure 2. SENSIT particle impact sensor (adapted from Stout and Zobeck (1997) with permission of Blackwell Publishing)
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Stout, 1990; Gillette et al., 1996). The rate at which mass transport increases with distance is a function of field
characteristics. A simple equation to describe the increase of saltation flux with distance at a specific height
above the soil surface has been described by Stout (1990) as:

f(x,z) = fmx(z)(1 − e−x/ b(z)) (1)

where f(x,z) is the saltation flux at distance x and height z, fmx(z) is the maximum saltation transport capacity
at height z, and b(z) is a length scale parameter that also varies with height. The b parameter will vary with
surface characteristics such as soil texture, roughness, residue cover, etc. Note that where x = b, Equation 1
reduces to 0·632, indicating that b represents the distance at which mass flux attains a value of 63·2 per cent
of the transport capacity, fmx. About 98 per cent of the transport capacity is reached at a distance of 4b. Figure 3
illustrates the saltation flux measured at a height of 0·15 m in an eroding fine sandy loam (Stout, 1990). As
transport capacity is attained, saltation flux remains relatively unchanged because the momentum extracted from
the wind by particles already in flow limits the amount of mass that may be entrained and, thus, deposition and
erosion of sediment are balanced.

The transport capacity and distance required to reach the transport capacity vary with surface roughness,
amount of erodible material, vegetation or other cover, and other factors. A bare, smooth, flat field with unstruc-
tured loose but uniform soil would present the most erodible condition. Any changes in any of these factors
could cause differences in saltation flux due to differences in entrainment, transport, or deposition of sediment
(Stout and Zobeck, 1996). When any of these factors change, they should be carefully documented. For most
model validation purposes, the field should be ‘homogeneous’. It may be better to evaluate a small homogeneous
field than a large heterogeneous field with great variation in surface properties. Unfortunately, most agricultural
fields are characterized by spatial variability in the many factors that determine the wind erodibility of the soil,
and thus significant spatial variation in saltation flux is often observed.

A field length of approximately 300 m is needed in many bare agricultural fields to approach saltation
transport capacity. Analysis of data from a 200 m diameter bare, flat, fine sandy loam field in Big Spring, Texas,
suggests maximum saltation flux was not reached for most erosion events. Saltation flux was near maximum at
a distance of 250 m in a bare, fine sandy loam soil with small tillage ridges (Stout and Zobeck, 1996). Smaller
fields may be adequate in sandier soils, although in a study of a sandy soil in Niger (greater than 90 per cent
sand), the transport capacity was not reached at 80 m (Bielders et al., 2002).

In studies to evaluate wind erosion control practices, smaller fields are often used to compare the saltation
transport among various erosion control alternatives. Usually transport capacity is not attained in these smaller
fields. It is most important in these studies to ensure that the field lengths used to compare among treatments

Figure 3. Saltation transport measured at a height of 0·15 m in an eroding fine sandy loam on 2 March 1988 as described by Stout (1990)
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are the same or have been scaled to the same distance among treatments. This is necessary because, as discussed
above, until the transport capacity is reached the saltation transport increases with field length. Scaling to the
same distance in each treatment is simplified if the sampling distance is within the linear portion of the saltation
transport curve as illustrated in Figure 3. Additional details of sampler location to evaluate erosion control
practices are described later in this paper.

Suspended particles never reach a stabilized maximum in fields but continue to be produced, transported, and
dispersed as long as saltation is occurring at the soil surface. For example, the horizontal mass flux of suspended
particles continued to increase at distances greater than 350 m in a bare, fine sandy loam soil with small tillage
ridges (Stout and Zobeck, 1996) and at distances greater than 1560 m for a salty dry playa lake surface (Gillette
et al., 1997). Nevertheless, it is useful to determine the vertical suspension flux, which is a function of horizontal
saltation flux (Gillette, 1977; Shao et al., 1996; Alfaro and Gomes, 2001). Although the relationship of vertical
suspension flux and saltation flux depends on the fetch length and can theoretically be measured at many places
in the field, we recommended making measurements where saltation flux has reached a maximum, if possible.

Field surface conditions

A variety of surface conditions or factors should be considered in field-scale wind erosion studies. Table II
lists the soil surface properties used in selected wind erosion models now in use. Some properties such as soil
texture, organic matter, and calcium carbonate content affect the erodibility of soils but are inherent properties
that change very slowly under natural conditions. They should be documented for each study but usually need
to be measured only once. Other properties, such as surface roughness, are temporal and change rapidly in
response to climatic conditions or management practices. Temporal soil properties known to be important in
wind erosion processes should be measured whenever significant change occurs during the sampling period.
Details of the soil properties affecting WEPS have been provided by Zobeck (1991b). Other models may require
different representations of the same properties or require different properties (Table II).

Surface soil wetness. The wetness or moisture content of the surface layer of particles, about 2 or 3 mm in
depth, has a profound effect on the wind erodibility of unconsolidated sediment. Many studies have shown that
the intergranular cohesion associated with moisture increases the threshold velocity needed for particle move-
ment (Chepil, 1956; Bisal and Hsieh, 1966; Azizov, 1977; McKenna-Neuman and Nickling, 1989; Kroon and
Hoekstra, 1990; Seleh and Fryrear, 1995; Chen et al., 1996). A review of the effects of surface moisture content
on aeolian sand transport has been provided by Namikas and Sherman (1995).

Traditionally, water content has been expressed as the gravimetric (mass) soil water content (Θm), the ratio
of the mass of water present in the sample to the mass of oven-dried (dried to constant weight at 105 °C) soil
(Topp, 1993). However, the water content may also be expressed on a volumetric basis (Θv), as the volume of
water present in a volume of soil. The water content expressed on a volume basis is calculated as the product
of Θm and the ratio of the bulk density of the soil to the density of water. The distinction is important and should
be clearly indicated when reporting results.

Although many studies of the effect of sediment water content on aeolian transport have related transport to
the water content on a mass basis, the water content on a mass basis does not indicate how tightly the water
is held by the soil, which is referred to as the water potential. The water potential may be thought of as the
amount of work required to remove water from the system (Livingston, 1993). The curve describing the rela-
tionship of water content on a volume basis and the water potential is called the soil water release or soil
moisture characteristic curve. In practice, water release curves are uniquely related to a soil and are most closely
associated with soil texture and structure. As a result, soils with different particle size distributions will not have
the same soil water potential at the same water content. For example, the water in a clay soil with 15 per cent
water content will be bound much more tightly than the water in a fine sandy loam soil also at 15 per cent water.
The importance of this relationship is underscored by McKenna-Neuman and Nickling (1989), who showed that
the entrainment of sediment is theoretically and physically related to soil water potential. Field measurements
of soil water should be related to the water potential to have wide application. Relating water content on a
volume or mass basis to water potential is typically done using laboratory pressure plate chambers that maintain
a constant pressure on a wet sample. The water content is measured on a volume or mass basis on samples that
have been brought to the equilibrium moisture level at a known pressure (Klute, 1986b).
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There are many methods to measure the water content of soils in the field (Klute, 1986a; Carter, 1993). Most
methods require installation of a sensor within the soil matrix, or in the case of gravimetric measurements,
require the destruction of the sample. However, since wind erosion is a surface phenomenon, only the first few
millimetres of particles are immediately affected and must be observed. Measurements of soil wetness collected
even a few centimetres below the soil surface are not directly related to aeolian entrainment and transport. The
water potential of soil materials dry enough to be entrained by wind is best measured in small chambers by
thermocouple psychrometry (Rawlins and Campbell, 1986). It is not currently possible to use thermocouple
psychrometers to measure the soil surface 3 mm in situ.

Of the many methods to measure soil water content, only gravimetric water content measurements have been
used to measure the 0–3 mm near-surface layer. Gravimetric sampling is the standard method of measuring
water content of the near-surface layer in wind tunnel studies of the effect of soil wetness on entrainment. A
very simple, easily constructed, and inexpensive field soil sampler to determine the soil-water content distribu-
tion in layers as thin as 1 mm has been described by Reginato (1975). However, gravimetric sampling is time-
consuming and requires modification of the eroding surface.

There are no thoroughly tested, commercially available instruments to measure the in situ water content of
this very thin (0–3 mm or so) surface layer. One recent commercially available instrument (Pier Electronic,
GmbH, Wallau, Germany; http://www.pierelectronic.com/index.html) uses surface reflectance measured with an
infrared photometer to estimate moisture content. This device requires calibration, but has been used with
success in evaporation studies (Funk and Frielinghaus, 1997). Unfortunately, this instrument may have limited
application because the depth of penetration is dependent on the moisture content. Additional research is needed
to develop an inexpensive, real-time continuous reading of the field water potential of the surface 3 mm.

Although aeolian entrainment of sediment is clearly related to soil wetness, establishing the level of wetness
in the field by any method is difficult due to high spatial and temporal variability. Indeed, the near-surface soil
moisture varies considerably with depth over very short time periods and the soil is not uniformly moist across
the landscape in the field. We have observed aeolian transport in a tilled fine sandy loam soil shortly after a
thunderstorm passed the field, when standing water was still visible. In this case, a very thin layer of loose
erodible material deposited upon the ridges quickly dried and began blowing while the furrows still held ponded
water. A recent study of aeolian transport across a beach (Jackson and Nordstrom, 1997) describes the highly
variable nature of the beach surface water content in space and time. Gravimetric samples of the 0–5 mm depth
were made at several locations during a high wind event to document the temporal and spatial variability of
surface wetness. Future studies of field wind erosion that seek to account for the effect of soil wetness should
address the spatial and temporal nature of soil wetness affecting the eroding surface.

Surface roughness. Soil surface roughness (SSR) affects the wind stream by modifying parameters used to
describe the wind stream such as aerodynamic roughness and friction velocity. These parameters will be de-
scribed in more detail later in this paper. At the field scale, SSR or microrelief refers to the small-scale surface
features produced by tillage ridges, clods, rocks, or other surface features, excluding vegetation or other large
obstructions present on the soil. Surface roughness can be expressed in a number of ways and models vary in
the types of information they use to relate the effects of roughness with wind erosion. While some models use
aerodynamic roughness and friction velocity exclusively, others also require specific details of SSR (Table II).

Tillage produces oriented roughness called ridges (created by tillage tools in the direction of tillage) and
random roughness produced by the random orientation of soil aggregates and clods. The roughness produced
by tillage or other mechanical disturbances is also called microrelief. Wind erosion is affected by both oriented
and random roughness (Armbrust et al., 1964; Fryrear, 1984). Oriented roughness can be described by meas-
uring tillage ridge height and spacing. The ridge-to-height ratio is used in the Wind Erosion Equation (WEQ)
(Woodruff and Siddoway, 1965).

Random roughness (RR) is usually expressed as the standard deviation of height elevations after removing
the effects of surface slope and oriented roughness (Currence and Lovely, 1970). Surface pin meters are often
used to collect elevation measurements at 5 cm intervals over a 1 m2 area. More recently, laser profile scanners
have been used to automatically collect roughness data (Figure 4). The Revised Wind Erosion Equation (RWEQ)
(Fryrear et al., 1998) and the Wind Erosion Prediction System (WEPS) (Hagen, 1991) are examples of models
that use random roughness.
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Figure 4. Automated laser-based soil surface roughness meter

A simple method using a 1 m long chain, called the chain method, has been developed to estimate random
roughness (Saleh, 1993). The chain is laid on the ground and the shortened length has been related to pin-meter
measurements of random roughness. This method may be difficult to use in tilled fragile soils since the chain
must remain on the soil surface.

A new microrelief index has been developed for use in WEPS that can be used to estimate the fraction of
soil surface susceptible to abrasion (Potter et al., 1990). To resolve the index, surface elevation measurements
collected on a 1 m2 area are described by a two-parameter Weibull function:

SF = 1 − EXP(−(SA/B)C) (2)

where SF if the surface fraction of observation points having a shelter angle less than or equal to a given shelter
angle, SA is the given shelter angle, and the B scale parameter and C shape parameter are estimated by least-
squares non-linear regression. The shelter angle is defined as the minimum angle from horizontal that a saltating
particle must descend in order to strike a given location. Further details of the method of calculating this index
are provided by Potter et al. (1990). This method requires elevation grid data and is sensitive to rainfall amount
and intensity, tillage implement, and soil type (Zobeck and Popham, 1997, 2001).

The WEAM model of Shao et al. (1996) uses the non-erodible soil frontal area index of particles >0·85 mm
diameter as a measure of SSR (Table II) defined as:

Index = nbh/s (3)

where n is the number of roughness elements on the ground area s, and b and h are the characteristic width
and height of the elements, respectively. Lopez et al. (1998) used this index in a study of wind erosion in Spain
(Table I).

Dry aggregate size distribution. Dry aggregate size distribution (DASD) refers to the relative amounts of air-
dry aggregates or clods, on a mass basis, by size class, present on the soil surface. The type of data used to
represent the dry aggregate size distribution depends on the model used. A model developed by Marticorena and
Bergametti (1995) focusing on desert soil mobilization under natural, usually non-crusted, conditions uses
threshold friction velocity computations that are dependent on the microped size distributions of erodible soil
particles (Sørensen, 1985; Li and Martz, 1994).

Chatenet et al. (1996) have proposed a sampling and analysis method for determining the dry size distribution
of loose microped material. Approximately 0·5 to 1 kg samples are oven-dried at 105 °C for 24 h, followed by
cooling in a desiccator. The fraction greater than 2 mm is separated by slow hand-sieving. The remaining sample
is divided into 70 g subsamples that are sieved for 8 min on an eight-sieve Fristch vibratory system set at a



MEASUREMENTS FOR FIELD-SCALE WIND EROSION STUDIES 1173

Copyright © 2003 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 28, 1163–1188 (2003)

vibration intensity of 5·5 (Chatenet et al., 1996). The DASD is described as the geometric mean and geometric
standard deviation of a combination of log normal distributions representing the mean mass collected on the
sieves. Caution should be exercised when using the geometric mean and standard deviation because these
parameters are greatly affected by specification of the smallest sieve size and sieving method (using amount
passing versus amount retained on each sieve; Zobeck et al., 2003).

Other models such as WEPS and RWEQ focus on soil mobilization in disturbed agricultural fields and so
consider the entire distribution of soil aggregates and clods. For these models, approximately 5 kg samples are
collected from the upper 5 cm of the disturbed (tilled) soil surface, air-dried and sieved using a rotary sieve
(Chepil, 1962). The rotary sieve is a sieving device that has been used in the USA to determine the erodible
fraction (mass fraction of particles <0·84 mm diameter) of surface soils for many years. If tillage ridges are
present, samples should represent the entire bed form from the tillage ridge to the furrow bottom. Recent
analyses of over 5400 distributions have demonstrated that the Weibull distribution is the most accurate and
precise distribution to describe DASDs (Zobeck et al., 2003). The Weibull distribution used to describe soil
DASDs is of the form:

    
Fraction at size eX

M x X
MT

X b c

  
(   )

    ( / )=
<

= − −1 (4)

where M(x < X) is the sample mass x passing sieve opening diameter X, MT is the total sample mass, the b
parameter is a scale factor and the c parameter is a shape factor. The geometric mean diameter is estimated as
the size at 0·50 fraction passing (d50). The erodible fraction is determined by solving for Equation 4 after
substituting 0·84 mm for X.

Dry aggregate stability. Dry aggregate stability refers to the resistance of soil aggregates to breakdown from
physical forces and is a measure of the strength of the binding agents within aggregates (Skidmore and Powers,
1982). During wind erosion, soil aggregates are subject to bombardment by saltating grains that impart physical
forces upon impact. The amount of erodible sediment dislodged from aggregates is related to how well they
resist abrasion (Hagen, 1984). Although a variety of methods have been developed to estimate dry aggregate
stability (Chepil, 1951; Skidmore and Layton, 1988), few are used in modelling the erosion of soil by wind.

A notable exception is the WEPS model which uses a dry aggregate stability index called the crushing energy.
The crushing energy is a measure of the amount of energy per unit mass needed to crush an aggregate of a
specified size to a specified end point (Skidmore and Powers, 1982). A device called a crushing energy meter
has been developed specifically to measure crushing energy (Boyd et al., 1983; Hagen et al., 1995). The soils
are sieved in the field to obtain aggregates approximately 15 mm diameter. Due to the large variation in crushing
energy values for individual aggregates, at least 15 aggregates are collected from each location.

Crust Characteristics. In agricultural fields, crusts form in unconsolidated soils during rainfall and are
affected by factors such as soil aggregation and roughness (Zobeck and Popham, 1992). Crusts are more com-
pact and mechanically stable than the soil below (Chepil, 1958) and have a great impact on the erodibility of
soil by wind. The effects of crusts on wind erosion have been measured in wind tunnels (Zobeck, 1991a; Hagen
et al., 1992; Rice et al., 1996, 1997) and in the field (Sterk et al., 1999; Gomes et al., 2003b; Rajot et al.,
2003). Wind tunnel studies of 14 soils found unconsolidated, loose soil to be from 40 to 70 times as erod-
ible as the same crusted soils (Zobeck, 1991a). However, few models use the presence or absence of a crust in
erosion estimates (Table II). Adjustments to the soil erodible fraction and estimated annual soil loss are made
in WEQ when a crust is present (Soil Survey Staff, 1988, table 502-2). Crust thickness, stability, fraction of
cover, and loose erodible material lying on the crust are used in WEPS (Zobeck, 1991b).

Since the effect of crust characteristics on aeolian processes is poorly understood, measurement methods have
not been widely accepted. For example, crust thickness, although conceptually simple, is difficult to determine.
Most agree that the crust includes the surface skin-seal of fine material and the deeper washed-in region
immediately below the skin-seal (McIntyre, 1958). The thickness of a crust is measured in the field using a
simple ruler. The difficulty comes in identifying the somewhat arbitrary separation of the washed-in region and
unconsolidated material beneath. The situation is further complicated when larger clods intrude into the washed-
in zone of the crust.
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Figure 5. Pocket penetrometer showing: A, 6 mm diameter foot; B, strength level indicator; C, location of spring within penetrometer body

Perhaps the most convenient method to measure crust characteristics is to use a line-transect, making crust
observations at regular intervals along the transect (Zobeck and Popham, 1992; Rajot et al., 2003). Measurement
of crust thickness, stability and amount of loose erodible material lying on the crust may be made at each point.

Crust stability or strength, in the context of wind erosion, refers to the ability of crusted soils to withstand
the abrasive action of saltating sand grains during wind erosion events (Zobeck and Popham, 1992). A commer-
cially obtainable spring-loaded pocket penetrometer (Figure 5) is available to make many rapid measurements
of crust stability in the field. The pocket penetrometer is used to measure the force necessary to rupture the crust.
As the 6 mm diameter foot (A in Figure 5) is pushed into the soil, a strength level indicator (B Figure 5) is
moved down the arbitrary scale. The level indicator records the maximum strength as the foot springs back to
the starting position when the crust fails. The force can be determined by calibrating the arbitrary strength reading
on the penetrometer to measurements made on a balance. In soils with very weak crusts, the spring within the
penetrometer (C in Figure 5) may need to be replaced with a weaker spring. However, direct application of this
technique for evaluating crust erodibility by saltating grains is questionable. Rice et al. (1997) described the use
of a flat-tipped 0·6 mm diameter penetrometer and a flat-ended cylindrical punch with inner and outer diameters of
5 and 6 mm, respectively, to estimate crust strength. They suggested that the small penetrometer gave results
that can be used to characterize surface erodibility to saltating particles. They determined that the punch results
would be unsuitable to estimate erodibility, as would other strength tests that are on too large a scale.

The amount of loose erodible material present on the crusted surface is related to the wind erosion potential.
These materials act to abrade the soil surface, causing further erosion. Erosion in some areas is limited by the
amount of erodible material available to abrade a crusted surface. Scientists working on WEPS have measured
the mass per unit area of this loose material using a specially designed field-portable vacuum system (Zobeck,
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1989). A small portable commercial vacuum cleaner will also work in most situations where a power source is
available. A simple and rapid method was recently used to measure the depth of this loose erodible material
along a transect in Niger (Rajot et al., 2003). In this study, the loose erodible material depth was measured by
observing the depth that a needle penetrated after stopping at the crust surface.

Non-erodible surface cover. Non-erodible surface cover includes any material lying on the soil surface,
protecting it from the force of the wind and impact of saltating grains. In most models, non-erodible surface
cover includes coarse rock fragments and flat-lying plant residue. Generally, there is an exponential decrease in
soil loss with increasing surface cover (Bilbro and Fryrear, 1995). Non-erodible surface cover can be determined
using line transects (Laflen et al., 1981) or by counting points touching cover elements on a grid overlaid on
a nadir-view photograph of the field.

Sampling design. The sampling design used to describe field characteristics will vary with landscape com-
plexity, purpose of the study, available time, and monetary constraints. A wide variety of methods are available
to describe the spatial variability of field characteristics. Detailed discussion of sampling designs is beyond the
scope of this paper. Papers focusing on soil spatial variability were presented at an international workshop in
1984 (Nielsen and Bouma, 1985). Simple line transects, as described above, can be used to determine the frac-
tion of cover of clods, vegetation, crust, loose erodible material or other features needed for erosion models such
as WEPS. More sophisticated geostatistical approaches may be used to provide maps of field characteristics.
Maps of field surface characteristic may be used in field studies to evaluate the effect of a characteristic on a
downwind sampling location.

Field characteristics basic operating principles and strategies

Although field shape is generally a matter of preference, some shapes have definite advantages. Circular fields
can simplify the calculation of fetch when samplers are placed symmetrically in the field and tillage in a circular
pattern allows testing of the effects of ridges from any direction.

Clear identification of a non-erodible boundary is necessary for the determination of distance to reach maxi-
mum saltation transport. A field length of about 300 m is necessary to approach maximum saltation transport
capacity in most bare agricultural fields. Any change in surface conditions will usually alter the soil erodibility
and thus, the maximum transport capacity and fetch needed to reach maximum transport. Suspended particles
never reach a stabilized maximum in fields, but continue to be produced, transported, and dispersed as long as
saltation is occurring at the soil surface.

Knowledge of spatial and temporal variation in surface field conditions is necessary to understand aeolian
processes. Field surface characteristics that may affect aeolian processes include surface wetness, roughness, dry
aggregates size distribution, dry aggregate stability, crust characteristics, and non-erodible surface cover. Base-
line values for these characteristics should be established at the start of data collection and measured as often
as necessary when significant change has occurred in surface conditions.

AEOLIAN SEDIMENT SAMPLING

Sampler design and efficiency

The types of samplers used for sampling aeolian sediment will vary depending upon the type of sediment to
be measured. Aeolian sediment samplers may use a passive or active sampling process (Zobeck, 2002). Passive
samplers rely on ambient wind conditions when collecting samples. Active samplers rely on some type of
suction provided by a vacuum pump to draw a known volume of air and particles into the device. Active
samplers are often used to collect suspended dust (defined as particles <60 µm diameter according to Bagnold
(1941) or <20 µm diameter according to Gillette (1977)). Ideally, all samplers should be isokinetic, whereby the
same wind speed is maintained through the orifice of the samplers as the ambient wind at the same height. A
third type of sampler that may be more appropriately termed a ‘sensor’, detects the presence of saltating grains
by recording impacts upon some type of sensor such as a piezoelectric crystal or a microphone.

Aeolian sediment may be rolling or sliding along the ground (creep), bouncing in relatively short hops
(saltation), or suspended for great distances (suspension) before returning to the ground. Most samplers are
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optimized to capture sediment transported by only one mode of transport. A recent survey of field samplers has
been provided by Zobeck (2002).

Sampling efficiency refers to how well a sampler collects sediment compared to the actual amount of sediment
in the wind stream. The sampling efficiency of a sampler must be known if estimates of true sediment transport
are needed. An ideal sampler would have 100 per cent efficiency that does not change with wind speed or
particle diameter. Unfortunately, most samplers have a range of efficiencies varying with wind speed and particle
diameter. Several studies have described the efficiencies of saltation and suspended dust samplers (Shao et al.,
1993; Goossens et al., 2000; Goossens and Offer, 2000).

Creep sediment samplers

Estimates of creep may be most economically made by simply burying a bottle with the opening flush with
the soil surface as suggested by Bagnold (1941). A container with a round opening is necessary in field studies
since the width of the opening will be the same from every direction. A more complicated but reliable creep/
saltation sampler that orients into the wind has also been used successfully by Stout and Zobeck (1996). This
near-surface passive creep/sampler collects material from three inlets at 0–3 mm, 3–9 mm, and 9–20 mm above
the soil surface (Figure 6).

Saltation sediment samplers and sensors

Saltating sediment may be measured directly using sediment samplers or inferred using electronic sensors.
Saltation sediment samplers are often called sand traps. The BSNE and MWAC samplers appear to be the most
popular sediment samplers for field studies of saltation (Table I). Both types of passive samplers are easily
mounted on poles to allow sampling at multiple heights. The BSNE is a wedge-shaped sampler with a 60 mesh
screen on the top or sides to allow airflow out of the sampler to achieve near-isokinetic conditions (Fryrear,
1986). In most applications, a series of BSNE samplers are fixed to a pole and range in height from 0·15 to 1·0 m
(Figure 1). A schematic of MWAC samplers mounted on a pole is shown in Figure 7. The BSNE sampler orifice

Figure 6. Near-surface creep/saltation sampler (reprinted from Zobeck (2002), p. 504, by courtesy of Marcel Dekker Inc.)
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Figure 7. Modified Wilson and Cooke (MWAC) sediment catcher (pvc, polyvinyl chloride) (from Sterk and Raats (1996) with permission
of the Soil Science Society of America)

Figure 8. Saltiphone particle impact sensor (from Sterk et al. (1998) with permission of John Wiley & Sons, Ltd.)

is much larger (1000 mm2 or 200 mm2 for those designed for the near-surface measurements) than the MWAC
(50 mm2) and will collect larger samples. In detailed tests of five aeolian sand traps, Goossens et al. (2000) found
that although both samplers had similar sampling efficiencies (70–135 per cent), the efficiency of the MWAC
sampler was less influenced by ambient wind speed.

Although experimental saltating sediment samplers with automated, high frequency sampling capability have
been described (Funk, 1995; Bauer and Namikas, 1998; Funk et al., in press), most studies use devices that are
sampled manually after a storm. A few studies have manually sampled at intervals within a single storm (e.g.
Stout and Zobeck, 1996).

Precise information on the initiation and duration of saltation has been gathered using commercially available
electronic sensors that detect particle movement (Spaan and Van der Abeele, 1991; Stout and Zobeck, 1997).
A SENSIT detects particles using a piezoelectric sensing element (Figure 2). A similar new particle sensing
device called ‘Safire’, also utilizing a piezoelectric sensing element, has recently been described and tested
(Baas, 2002). A Saltiphone is an acoustic sensor that detects particles striking a 200 mm2 diameter microphone
mounted in a tube with a wind vane (Figure 8). All electronic sensors detect particles at a frequency of 1 Hz
or faster. The SENSIT has the advantage that it can be mounted very close to the soil surface and has an
omnidirectional sensing element.
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Suspended sediment samplers

Passively sampling suspended sediment is more difficult than sampling saltating sediment because fine sus-
pended particles (1) are easily carried by the wind stream and may not enter the sampler if it is not isokinetic,
and (2) are not easily trapped by a screen or other physical barrier. Tests of several samplers at low wind speeds
(1–5 m s−1) using a silty loess that consisted of 95 per cent silt (2–63 µm) found a BSNE sampling efficiency
of 40 per cent and a MWAC sampling efficiency of about 80 per cent for trapping suspended sediment (Goossens
and Offer, 2000). However, sampling efficiency of the MWAC varied with wind speed. Sampling efficiencies
at much higher velocities common in dust storms were not determined.

Studies addressing the emission of dust particles in suspension generally use active samplers that provide a
suction using a pump of some type (e.g. Langham et al., 1938; Chepil and Woodruff, 1957; Gillette et al., 1974).
For isokinetic sampling, the suction of the sampler is adjusted so the wind speed in the sampling orifice is the same
as the ambient wind speed. Theoretically such a device is 100 per cent efficient. Dust concentration is usually
determined by measuring the mass of dust deposited upon pre-weighed filters through which a known volume
of air has passed. Nickling and Gillies (1993) describe a suspended sediment sampler with a 1·3 cm sampling orifice
diameter that orients into the wind. Suction is provided by a high volume pump that is manually adjusted to
match the ambient wind speed. A recent modification of this method was made by attaching the sediment sampling
head to a DustTrak aerosol monitor described below (W. G. Nickling, personal communication; Figure 9).

Many current studies aim to quantify and characterize only a specific particle-size population, typically
particles smaller than 10 µm (PM10). Commercially manufactured high-volume (General Metal Works Inc.) and
low-volume omni-directional samplers (AirMetrics, Inc.) were used in recent studies of emissions of PM10 from
agricultural land (Stetler et al., 1994). Generally these devices are designed to measure dust concentration at low
wind speeds (<10 m s−1). Stetler et al. (1994) found that their instruments were accurate at wind speeds up to
approximately 13·5 m s−1. Modifications to a stacked filter unit were proposed by Cahill et al. (1996) to allow
sampling up to 30 m s−1. Nevertheless, most active suspension sampler efficiencies are not known for high wind

Figure 9. Suspended dust sampler (photo by W. G. Nickling)
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speeds that occur during wind erosion events, specifically for mineral dust particles emitted during wind erosion
of soil surfaces.

Although use of pre-weighed filters to determine dust mass gravimetrically is probably the easiest and cheap-
est method, dust mass can also be determined by other means. Mass can also be obtained by total elemental
analyses of sediment on the filter by proton-induced X-ray emission (PIXE) (Johansson and Campbell, 1988)
or X-ray fluorescent spectrometry (XRF) (Quisefit et al., 1994). The total mass of mineral aerosol is calculated
by summing oxide forms of major elements. In the latter case, the total mass of sediment is underestimated
because loss on ignition (LOI) is not taken into account. Due to the high sensitivity of these analytical methods
(a few micrograms per filter) they are recommended to determine mass concentration over short periods of
erosion such as those used to measure vertical flux (typically 20 min) (Rajot et al., 2003; Gomes et al., 2003a).
Particle number concentration can also be obtained by direct counting of particles on filters by coupling microscopy
and image analysis (Gillette et al., 1974). This method requires counting a large number of particles to ensure
optimal particle sampling on the filters, especially if automated image analysis is used.

Commercially produced instruments are now available to indirectly measure suspended dust at rapid sampling
rates (1 Hz). The DataRAM (MIE, Inc.), and DustTrak (TSI, Inc.) are aerosol monitors that measure aerosol
concentration by light scattering and the GRIMM Environmental Dust Monitor (GRIMM Technologies, inc.)
uses light scattering to measure particle concentration and size. The Tapered Element Oscillating Microbalance
(TEOM) continuously measures mass of a filter directly during air filtration by means of a microbalance
(Patashnick and Rupprecht, 1991). It is equipped with a classical low volume PM10 sampling inlet. While these
instruments offer promise for detailed temporal measurements of dust during a storm, they also were designed
for low wind conditions. Sampling efficiencies of these instruments for wind speeds occurring during a dust storm
are not yet known but may be quite low. For example, a study of the sampling efficiency of the DustTrak shows
the sampling efficiency varies considerable by particle size and wind speed (TSI, 2002). The sampling efficiency
of 10 µm particles at a wind speed of 2·2 m s−1 was about 100 per cent while the sampling efficiency was about
40 per cent at a wind speed of 10 m s−1. The sampling efficiency for 14 µm diameter particles was less than
10 per cent at a wind speed of 10 m s−1. The study did not investigate wind velocities greater than 10 m s−1.

Sampling for calculation of mass flux

Sampling the entire saltation layer or at multiple heights within the saltation layer is necessary to determine
total horizontal sediment flux. For wind erosion at the scale of the field, the majority of mass flux will occur
as creep and saltation material very close to the soil surface. For example, mass transport studies of a fine sandy
loam soil showed that 50 per cent of the total mass transport occurred below a height of 1·7 cm (Stout and
Zobeck, 1996). It is difficult to place a limit on the boundary between the zone dominated by saltation flow and
that dominated by suspension flow. Stout and Zobeck (1996) showed that at a height of 70 cm, over 88 per cent
of the sample collected by BSNE samplers had a diameter of less than 90 µm. Samplers rarely need to exceed
1 m in height for studies of saltation flux. Sampling at several heights, including the surface to measure creep,
up to a height of 1 m will generally ensure capture of over 99 per cent of the creep/saltation sediment (see Stout
and Zobeck, 1996, table 3). Estimates of mass transport may be biased when creep is not measured since creep
can make up to 40 per cent of the transported mass.

Figure 10 illustrates the variation of aeolian sediment with height (Stout and Zobeck, 1996). In this example,
eight saltation observations were made from 0·001 to 1·7 m above the soil surface using the saltation/creep and
BSNE samplers. Several observations of aeolian sediment at different heights are needed to define the math-
ematical relationship of sediment flux with height. In this example, the saltation flux profile is very well
described with a power-law equation. Detailed description of equations used to determine sediment flux is
beyond the scope of this paper. Note the large sediment flux occurring very close to the soil surface. This
example illustrates the importance of collecting samples near the soil surface. The lowest samplers at heights
of 0·001, 0·006 and 0·015 m collected a large fraction of the total sediment in saltation. Not measuring these
heights would result in a very different equation to describe the flux throughout the saltation zone. If only
measurements of the total saltation transport are needed, a vertical slot sampler with a single vertical slot that
spans the saltation zone, such as that described by Nickling and McKenna Neuman (1997) or a Bagnold catcher
(Zobeck, 2002), might be a better choice.
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Sampling the same particle sizes at two levels above the saltation layer is necessary to determine the vertical
flux of dust. At least two heights of suspended dust sampling are necessary to calculate vertical dust flux using
the gradient method and flux equation derived by Gillette (1977) (e.g. Nickling and Gillies 1993; Stetler and
Saxton, 1996; Lopez et al., 1998; Rajot et al., 2003). One sampler must be placed above the saltation layer
(about 1 m), and the other one a few metres higher depending on the fetch (typically from 3 to 10 m height).
This method is based on the low sedimentation velocity of dust particles in comparison to the vertical velocity
fluctuations during erosion. This property is assumed to be the same for small dust particles (diameter <20 µm)
in typical wind erosion conditions, but not for larger ones (Gillette et al., 1972; Gillette, 1977). Particular care
should be taken to ensure instruments used at both heights are calibrated to obtain the same results under the
same experimental conditions. Small calibration errors among instruments may produce poor flux estimates.

Point or spatial sampling

The location and number of samplers used for field-scale studies will depend upon the objectives of the study
and local meteorological and budgetary considerations. To measure saltation sediment transport across an area,
the minimum number of sampler locations is two if the major erosive wind direction is relatively constant, one
to measure the incoming flow and the second to measure the sediment leaving the site. The difference between
the incoming and outgoing sediment is the eroded or deposited mass of the area lying between the two measure-
ment locations. This approach was recently used by Bielders et al. (2000) to measure the effect of various
on-farm management practices to reduce wind erosion in Niger. If wind direction varies from event to event,
it is necessary to have sample locations along the study area boundary (Rajot et al., 2002). As described earlier
in this paper, it is important in these studies to ensure that the field length used to compare among treatments
is the same or has been scaled to the same distance among treatments. Additional samplers placed between these
field border samplers can be used to determine the state of mass transport across the field.

Sampler location to determine the variability of sediment flux throughout the field is more complicated. Sterk
and Stein (1997) applied geostatistical techniques to describe spatial variations of sediment flux throughout an
experimental plot using 21 MWAC sediment catchers in a regular grid of 40 × 60 m. During one season four
wind storms were observed, and the observed sediment mass fluxes showed large spatial variability. Despite the
relatively large number of samplers for such a small plot size, 21 observations were not sufficient to estimate
variograms for each storm (Webster and Oliver, 1992). Therefore the observations were normalized and pooled
to allow geostatistical analyses. The obtained variogram was used to produce storm-based maps of sediment
mass flux with kriging. These maps were used to determine accurate sediment mass balances for the plot.

Recently (G. Sterk, 2001, unpublished data), the same data and variogram were used to analyse the required
number of saltation samplers for the 40 × 60 m plot. This was done with stochastic simulation. Possible reali-
zations of sediment mass flux during a particular storm were generated using all 21 observations followed by
simulations in which the number of observations was reduced each time. If ten observations, which were

Figure 10. Vertical distribution of mass flux of an eroding fine sandy loam soil
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regularly divided over the plot, were used, the simulation results were statistically similar to those with all 21
observations. Hence, a minimum of ten catchers were required to obtain sufficient information on spatial varia-
tion within such a plot. Current wind erosion and dust transport models do not address this level of detail in
spatial variability. Such detailed studies are needed for accurate mass budget estimates as well as model validation.

Other work on spatial sampling of wind erosion used nested sampling techniques (Chappell et al., 1996;
Chappell, 1998; Chappell and Warren, 2003). A study of geostatistical methodology for estimating sediment
transport, presented in this Special Issue (Chappell et al., this issue), tested nested, grid, and random sampling
networks and recommended nested networks for estimation and mapping of sediment transport when few
resources are available and especially for use over large areas.

In most cases, vertical dust flux is a function of horizontal saltation flux (Gillette, 1977; Shao et al., 1996;
Alfaro and Gomes, 2001) and it is recommended that both horizontal saltation flux and vertical dust flux be
measured at the same location to establish a relationship. Although the relationship of vertical and horizontal
flux does not depend on fetch and can theoretically be obtained anywhere within the field, we further recommend
installing suspension samplers at the place where the horizontal flux is at a maximum. In the case of variable
wind direction, samplers should be placed in the centre of the field to maximize fetch from all directions.

Suspended dust samples also should be collected upwind of the field to establish the amount of dust from
upwind sources. In general, although vertical suspension flux will have a strong relation to the local saltation
flux, occasionally the source of some of the measured suspension flux in a study field is a distant upwind source
where saltation activity is much higher. In addition, not all suspended dust may be caused by saltation activity.
Recent studies, in a region of silty loess deposits where saltation does not appear to be a major factor, suggest
suspended dust may also occur as a direct response to the wind (Kjelgaard et al., 2002).

Aeolian sediment sampling basic operating principles and strategies

Ideally, aeolian sediment samplers should be isokinetic with a high sampling efficiency. The sampling efficiency
must be known to estimate the true sediment flux. Passive samplers are most commonly used to gather creep and
saltation data and active samplers are most commonly used to collect suspended dust. Electronic impact sensors
are recommended to estimate the onset and duration of erosion. Suspended dust samplers are commercially avail-
able but research is needed to determine their efficiency in high wind speeds common during wind erosion events.

Sampling the entire vertical column or at several heights, including the surface to measure creep, up to a
height of 1 m is necessary to ensure capture of the creep/saltation sediment and determine horizontal sediment
flux. Several observations of aeolian sediment at different heights are needed to define the mathematical rela-
tionship of sediment flux with height.

The location and number of samplers used for field-scale studies will depend upon the objectives of the study
and the local meteorological conditions. To measure saltation sediment transport across an area, the minimum
number of sampler locations is two if major erosive wind direction is relatively constant. If wind direction
varies from event to event, it is necessary to have sample locations along the study area boundary. Variation
of sediment flux within the field requires more complicated sampling patterns using random, nested, gridded or
other networks.

METEOROLOGICAL MEASUREMENTS AND CALCULATIONS

Meteorological station instrumentation

Since wind erosion is an atmospheric process, careful measurements of a limited number of climatic variables
are needed. The meteorological station should include an anemometer and wind vane, air temperature, solar
radiation and relative humidity sensors, rain gauge, soil temperature and moisture sensor, and a data logger. All
of the above instruments are available commercially and can be custom configured. These instruments are
recommended to provide data used in erosion models (Table II). In many studies, meteorological instruments
are mounted on 10 m towers. However, since most eroding fields are relatively flat with little standing vegetative
cover, a 2 m tower is often adequate (Figure 11). Taller towers are recommended when studying tall standing
vegetation.
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Figure 11. Meteorological tower, 2 m tall: A, combination anemometer and wind vane; B, relative and air temperature sensors; C, solar
radiation sensor; D, solar panel; E, storage batteries; F, Data logger housing

Calculation of wind speed, friction velocity and aerodynamic roughness

Wind speed, friction velocity and aerodynamic roughness are the most important atmospheric parameters
considered in most wind erosion studies. Since the standard height for measuring wind speed is 10 m, the
1/7-power-law profile (Simiu and Scanlan, 1978) can be used to convert data measured with smaller 2 m towers
to a height of 10 m using the equation:

(u2/u1) = (z2/z1)
1/7 (5)

where u1 and u2 refer to the wind speed at heights z1 and z2, respectively.
In some cases where atmospheric stability parameters are desired, four or more anemometers are mounted on

the meteorological tower along with concomitant air temperature sensors. High frequency measurements of
temperature and wind speed allow the calculation of atmospheric stability parameters (Monin and Obukhov,
1954); however, enormous amounts of data are collected that are seldom needed for many wind erosion studies.
Such information is more useful in studies concerning dust production (e.g. Lopez et al., 1998; Gomes et al.,
2003b). During the strong winds of erosion events, the boundary layer near the surface is often statically neutral
and corrections for stability are not necessary. However, the anemometers also allow calculation of the friction
velocity (u*) and aerodynamic roughness length (z0) from the semi-logarithmic equation:
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where u(z) (m s−1) is the average wind speed at height z(m); u*(m s−1) is friction velocity; k is von Karman’s
constant (0·4), a dimensionless number; and z0 (m) is the aerodynamic roughness height. The latter corresponds
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to the theoretical height at which wind speed near the surface falls to zero and depends on the roughness of the
ground surface. The friction velocity is a measure of shear stress at the surface, and is used as the driving
variable for windblown sediment transport in most wind erosion models. The aerodynamic roughness parameter
z0 is useful to determine soil erodibility conditions. In general, z0 increases with surface roughness, leading to
decreased soil erodibility. Equation 6 applies to the surface portion of the planetary boundary layer where Coriolis
effects can be ignored and the momentum flux may be considered constant, independent of height. Furthermore,
it does not consider any viscous sublayer that may exist over a smooth surface or the canopy or roughness
sublayer in which the flow is very likely to be disturbed by individual roughness elements (Arya, 1988).

The determination of parameters u* and z0 is facilitated by rearranging terms to create the linear equation form:
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A plot of average wind speed versus height as shown in Figure 12 illustrates wind speed data for two different
surfaces plotted using Equation 7. The parameters are determined from the slope and intercept of the line.
Multiplication of the slope (u*/k) by 0·4 defines the friction velocity, u*. The aerodynamic roughness is found
as the anti-log of the quotient of the intercept and slope.

Soil surface conditions that affect the wind profile may vary spatially and should be considered in field-scale
studies. A single stationary meteorological tower may not adequately describe the spatial variability of u* and
z0. Information on the spatial variability of these parameters is easily measured using a portable 2 m tower
that can be moved around the field (Figure 13). The tower shown in Figure 13 includes a wind vane and four
anemometers. Measurements of the wind profile are needed after each significant change in aerodynamic rough-
ness, such as that produced by a growing crop.

Sampling interval

The sampling interval for the meteorological instruments varies depending upon the purpose of the study. A
one-hour sampling interval is adequate to document seasonal variation in erosion. For studies at the time scale
of one erosion event, the sampling interval should not exceed 5 min. Even shorter sampling intervals are
necessary to arrive at the true value of erosion threshold wind speed. Calculated threshold values decrease as
wind speed averaging time increases (Stout, 1998). Stout (1998) found that threshold estimates based on a 10 s
averaging time were about 18 per cent less than estimates based on a 1 s averaging time. The recommended
sampling interval to estimate erosion threshold wind speed is 1 s.

Some studies use a combination of sampling intervals. In the Columbia Plateau Study (Stetler et al., 1994;
Saxton, 1995), all operations were controlled by a data logger which started an electrical power generator and
PM10 sampling devices when the wind velocity at 2 m height exceeded a 15 min average of 6·7 m s−1. The system

Figure 12. Wind velocity as a function of height for two different soil surfaces
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shut down after the 15 min average wind velocity fell below the threshold. This technique reduces the amount
of computer memory needed but may introduce some errors since part of a storm may be missed and storm
duration miscalculated when using a 1 h average. In addition, it is often more difficult to process the data when
variable time intervals are used.

Meteorological basic operating principles and strategies

Careful measurements of a limited number of climatic variables are needed. Meteorological measurements
should include wind speed and direction, air temperature, solar radiation, relative humidity, rain amount, soil
temperature and moisture. Wind speed, friction velocity and aerodynamic roughness are the most important
atmospheric parameters considered in most wind erosion studies. Measurements of the wind profile are needed
after each significant change in aerodynamic roughness, such as that produced by a growing crop.

CONCLUSIONS

Wind erosion is a natural process that has only been studied intensively for about the last half century. Measure-
ments of wind erosion at the field scale can be done in many ways, using different types of sampler, field sizes,
experimental layouts and analysis techniques. However, although the methods and instruments are numerous, the
selection of the instruments and methods employed are governed by relatively few operating principles. In this
paper we have outlined important principles to consider in conducting field-scale wind erosion studies and
proposed strategies of field data collection for use in model validation and development. Methods and instru-
mentation used are often a matter of preference or simply based on the availability of equipment and budget
constraints. However, adherence to the principles outlined will facilitate future use of these data by others.

For validation of dust emission models, there is a need for coupled horizontal and vertical erosion flux
measurements (Alfaro et al., 2002; Saxton et al., 2000). This requires performing vertical dust flux measure-
ments in field studies. Such measurements would become easier by the development of new automated dust
monitoring instruments. The new instruments need to measure suspended dust concentration with high efficiencies
at wind speeds of at least 15 m s−1. Coupled measurements also necessitate measurements of horizontal flux
resolved at the same time periods as measurements of vertical flux. Efforts are needed to produce an automated
device to measure saltation flux with high sampling frequency. Some success has been possible in calibrating
saltation impact sensors such as SENSIT (Gillette et al., 1997) and Saltiphone (Rajot et al., 2003).

Figure 13. Anemometer tower, 2 m tall
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To improve comparison of field-scale study results, we suggest that studies include a minimum of important
details on the experimental conditions. The most important items to be listed include:

(1) field data: location and dimensions, direction of tillage, occurrence and description of any upwind obstructions;
(2) sediment sampler data: number, type, placement, efficiency, sampling frequency, fetch distance, time of

sampling;
(3) soil surface data: soil type and classification, texture, soil moisture, organic matter and calcium carbonate

content, random and oriented roughness, dry aggregate size distribution, presence of crust and estimate of
stability and loose erodible material, soil cover type and amount;

(4) meteorological data: wind speed and direction with averaging times during storms, aerodynamic roughness,
friction velocity, duration of storms, antecedent rainfall, relative humidity, solar radiation, air temperature,
and wind direction variability during storm sampling.

Careful consideration of the climatic, sediment, and soil surface characteristics observed in future field-scale
wind erosion studies will ensure maximum use of the data collected.
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